Graduate School of Informatics
Nagoya University
Tsukamoto Laboratory

Publications

◆Original Papers (After 2010)
1. Synthesis and Characterization of Maleimide-Terminated Oligoimides Formed by a
  Michael Addition Reaction Using Methoxybenzenes
  T. Wakabayashi, S. Hor, K.-i. Oyama, and M. Tsukamoto, Tetrahedron, 141, 133486 (2023).
   
 2. Real-Time Monitoring of Enzyme-Catalyzed Phosphoribosylation of Anti-Influenza
  Prodrug Favipiravir by Time-Lapse NMR Spectroscopy
  T. Sugiki, A. Ito, Y. Hatanaka, M. Tsukamoto, T. Murata, K. Miyanishi, A. Kagawa,
  T. Fujiwara, M. Kitagawa, Y. Morita, and M. Negoro, NMR Biomed., 36, e4888 (2023).
   
3. Characterization of Organic Friction Modifiers Using Lateral Force Microscopy and
  Eyring Activation Energy Model
  J. Hou, M. Tsukamoto, H. Zhang, K. Fukuzawa, S. Itoh, and N. Azuma, Tribol. Int.,
  178, 108052 (2023).
   
4. Molecules with a TEMPO-Based Head Group as High-Performance Organic
  Friction Modifiers
   J. Hou, M. Tsukamoto, S. Hor, X. Chen, J. Yang, H. Zhang, N. Koga, K. Yasuda, K.
  Fukuzawa, S. Itoh, and N. Azuma, Friction, 11, 316–332 (2023).
   
5. Synthesis and Characterization of Methoxybenzene-Linked Polyimides Formed
  by 1,4-Addition to Bismaleimides
  S. Hor, K.-i. Oyama, N. Koga, and M. Tsukamoto, Polymer, 238, 124326 (2022).
   
6. Metal Ions Sensing by Biodots Prepared from DNA, RNA, and Nucleotides
  M. Wang, M. Tsukamoto, S. G. Vladimir, and Z. Anatoly, Biosensors11, 333 (2021).
   
7. Fluorescent Nanoparticles Synthesized from DNA, RNA, and Nucleotides
  M. Wang, M. Tsukamoto, S. G. Vladimir, and Z. Anatoly, Nanomaterials, 11, 2265 (2021).
   
8. Brønsted Acid-Catalyzed 1,4-Addition of 1,3,5-Trimethoxybenzene to Maleimides and
  Acrylates
  S. Hor, K.-i. Oyama, N. Koga, and M. Tsukamoto, Tetrahedron Lett.74, 153100 (2021).
   
9. Experimental Study of Application of Molecules with a Cyclic Head Group Containing
  a Free Radical as Organic Friction Modifiers
  X. Zhang, M. Tsukamoto, H. Zhang, Y. Mitsuya, S. Itoh, and K. Fukuzawa,
  J. Adv. Mech. Des. Syst., 14, JAMDSM0044 (2020).
   
10. A Solid-Supported Acidic Oxazolium Perchlorate as an Easy-Handling Catalyst for
  the Synthesis of Modified Pyrimidine Nucleosides via Vorbrüggen-type N-Glycosylation.
  N. Basu, K.-i. Oyama, and M. Tsukamoto, Tetrahedron Lett., 58, 1921–1924 (2017).
   
11. Synthesis of Ribonucleoside 3',5'-Cyclic Monophosphorodithioates.
  A. Fukuhara and M. Tsukamoto, Tetrahedron, 71, 3878–3884 (2015).
   
12. Practical Synthesis of Adenosine 3',5'-Cyclic Monophosphorodithioate.
  A. Fukuhara, H. Morita, K.-i. Oyama, and M. Tsukamoto, Tetrahedron Lett., 55,
  5261–5263 (2014).
   
13. Synthesis of Modified Pyrimidine Nucleosides via Vorbrüggen-type N-Glycosylation
  Catalyzed by 2-Methyl-5-phenylbenzoxazolium Perchlorate.
  H. Shirouzu, H. Morita, and M. Tsukamoto, Tetrahedron, 70, 3635–3639 (2014).
   
14. Cyclic Bis(3'-5')diadenylic Acid (c-di-AMP) Analogs Promote the Activities of
  Photosynthesis and Respiration of Chlamydomonas reinhardtii.
  T. Tezuka, H. Shirouzu, K. Ishida, N. Suzuki, T. Matsuo, K.-i. Oyama, S. Aoki, and
  M. Tsukamoto, Am. J. Plant Sciences, 5, 24–28 (2014).
   
15. Synthesis of 2'-Modified Cyclic Bis(3'–5')diadenylic Acids (c-di-AMPs) and
  Their Promotion of Cell Division in a Freshwater Green Alga.
  T. Tezuka, N. Suzuki, K. Ishida, K.-i. Oyama, S. Aoki, and M. Tsukamoto, Chem. Lett.,
  41, 1723–1725 (2012).
   
16. Controlling Glycosyl Bond Conformation of Guanine Nucleosides: Stabilization of
  the anti Conformer in 5'-O-Ethylguanosine.
  H. Asami, S.-h. Urashima, M. Tsukamoto, A. Motoda, Y. Hayakawa, and H. Saigusa,
  J. Phys. Chem. Lett., 3, 571–575 (2012).
   
17. Practical Synthesis of Cyclic Bis(3'–5')diadenylic Acid (c-di-AMP).
  N. Suzuki, K.-i. Oyama, and M. Tsukamoto, Chem. Lett., 40, 1113–1114 (2011).
   
18. Gas-Phase Isolation of Diethyl Guanosine 5'-Monophosphate and Its Conformational
  Assignment.
  H. Asami, M. Tsukamoto, Y. Hayakawa, and H. Saigusa, Phys. Chem. Chem. Phys., 12,
  13918–13921 (2010).
 
 

◆Review etc. (After 2010)
1.     Reduction: Hydrogenation and Transfer Hydrogenation of C=C.
        M. Tsukamoto and K.-i. Oyama, In Comprehensive Chirality (Second Edition), J. Cossy, Ed., 
        Elsevier, Amsterdam, Vol.7, 266–287 (2024).
 
2.  ビスマレイミドへの炭素求核剤のマイケル付加反応によって生成するポリイミド
  塚本眞幸, 若林知紀, 尾山公一, 月刊機能材料, 43(5), 46–51 (2023).
 
3.     Various Coupling Agents in the Phosphoramidite Method for Oligonucleotide Synthesis.
        M. Tsukamoto and Y. Hayakawa, In Synthesis of Therapeutic Oligonucleotides, M. Sekine and
        S. Obika, Eds., Springer, Singapore, 17–39 (2018) ISBN-13: 978-9811319112.
 
4.     Recent Application of Acidic 1,3-Azolium Salts as Ppromoters in the Solution-Phase
        Synthesis of  Nucleosides  and Nucleotides.
        M. Tsukamoto and K.-i. Oyama, Tetrahedron Lett., 59, 2477­–2484 (2018).
 
5.     Ferrocene, 1,1'-bis[(2R,4R)-2,4-diethyl-1-phosphetanyl]-, stereoisomer; Ferrocene,
        1,1'-bis[(2S,4S)-2, 
4-diethyl-1-phosphetanyl]-, stereoisomer.
        M. Tsukamoto and M. Kitamura, In electronic-Encyclopedia of Reagents for Organic Synthesis,
        John Wiley & Sons, DOI: 10.1002/047084289X.rn01622 (2013).
 
6.    Reduction – Hydrogenation: C=C; Chemoselective.
        M. Tsukamoto and M. Kitamura, In Comprehensive Chirality, E. M. Carreira and H. Yamamoto,
        Eds., Elsevier, Amsterdam, Vol. 5, 246–269 (2012).