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ABSTRACT : The onset flow developing between a rotating inner cylinder and a stationary outer 
cylinder is investigated by the numerical approach and the Ginzburg-Landau (GL) equation 
model.  This flow is well known as Taylor-Couette flow.  The lengths of cylinders are finite and 
the both end of the cylinders are stationary walls.  When the lengths of the cylinder are finite, the 
pitchfork bifurcation changes the flow from Couette flow to Taylor vortex flow at a critical 
Reynolds number. In case that the cylinder lengths are finite, the effect of the end walls are not 
negligible even the cylinder is long, and the Ekman layer develops at lower Reynolds numbers 
and it induces vortex flow near the end wall.  The initial perturbation of flow developing in an 
infinite space is modeled by the GL equation.  In this paper, we investigate the applicability of the 
unsteady one-dimensional GL equation model to Taylor vortex flow developing from rest and 
estimate the effect of end walls.  The modeling parameters are the initial and final amplitudes and 
the time constant.  The time variation of the velocity components are fitted by the solution of the 
model equation.  The result says that the time constant drastically changes in the axial direction 
of the cylinders.  Instead, the change is relatively gradual in the radial direction.  
 
 

1 Introduction 
The flows between coaxial rotating and/or stationary cylinders have been extensively investigated by 
the theoretical, experimental and numerical approaches [1].  This flow is known as Taylor-Couette flow, 
and the infinite cylinder lengths are assumed in the ideal conditions.  This type of flows can be found in 
many fluid machinery and chemical reactors, and the investigation of the flow behavior is important for 
not only the scientific interests but engineering areas.  In the realistic flow, the lengths of the cylinders 
are finite and the effect of the end walls of the cylinders are not negligible [2]. 
The development of the perturbations developing in a finite space is usually modeled by Ginzburg-
Landau (GL) equation of flow motion [3].  The early experimental study by Gollub and Feilich [4] 
measured the radial velocity component and estimated growth of the perturbation amplitude with the 
deviation of the Reynolds number from its critical values.  They concluded that the third-order GL 
model is enough to explain the flow behavior and the slowing down is effect is well predicted, while 
the higher model fails to explain the phenomena well.  Abshagen et al [5] investigate the time variation 
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of the velocity profile along the line consisting of the midpoints among two cylinders.  The numerical 
method they introduced reflect the effect of the end walls by a homotopy parameter ]1,0[∈τ , where τ = 
0 means the stress-free boundary condition and τ = 1 corresponds to a solid stationary end walls.  Their 
result shows that, while the flow with τ = 0 follows Landau amplitude equation, the numerical and 
experimental onset and decay of the radial velocity component across the critical Reynolds number 
have different time constants given by the GL equation even the end wall effect τ is small.  Czamy and 
Leuptow [6] and Manneville and Czarny [7] examined the flow for the larger aspect ratio that is the 
fraction of the length of the cylinder to the width between two cylinders. 
The study on the GL model in Taylor vortex flow mentioned above is limited to the flows at the 
midpoint of the cylinders.  In this paper, we study entire region of the azimuthal sections.  In the 
follows, we explain our research method in sec. 2 and give the result in sec.3.  Finally, we conclude in 
Sec. 4 

2 Research Method and Parameters Identification of the Ginzburg-Landau Equation  

2.1 Flow Field and Numerical Method 
We investigate the Taylor flow with a rotating cylinder and a stationary outer cylinder and the 
stationary end walls.  The coordinate system used here is the cylindrical coordinate shown in Fig. 1, 
whose origin is the center of the bottom end wall.  The geometrical parameters are the radius ratio η of 
two cylinders and the aspect ratio Γ defined by the ratio of the cylinder lengths to the cylinder gap 
width.  In this study we assume that the radius ratio η is 0.6667.  
The governing equation is the time-dependent two-dimensional incompressible Navier-Stokes equation 
and the equation of continuity:  The reference length is the gap width of the cylinder and the reference 
velocity is the circumferential velocity of the inner cylinder.  Then, we get the non-dimensional form 
equations: 

uuuu 21)( ∇+−∇=∇+
∂
∂

Re
p

t
  (1) 

0=∇u      (2) 
Where Twvu ),,(=u  is the velocity vector with is 
components in the radial, azimuthal and axial direction, 
t is the time, p is the pressure, Re is the Reynolds 
number based on the reference values.  The boundary 
condition is the non-slip condition and it is formulated 
as follows: 

T
iu )0,0,(=u  on the inner cylinder  

0u =   on the outer cylinder and end walls 
These equations together with the boundary conditions 
are solved by the finite difference method with third 
order accuracy for the convection term and the second 
term accuracy for the other spatial terms. 
 

Fig. 1  Coordinate System 
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2.2 Ginzburg-Landau Equation and Fitting Method 
The GL equation used in this study is the third order equation given by 

0u =−= 2
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where A is the amplitude, ε represent the relative variation from the critical point, and τ and A0
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scaling factors[5].  The general solution of the GL equation is 

.   (6) 

In this equation Ai and Af

We estimate the A

 are the initial and final amplitude, respectively, and T is the time constant 
defining the growth rate of the amplitude. 

i, Af

Let 

 and T by fitting the equation to the time series of velocity components obtained 
in the method in sec. 2.1. 

)1,1,0(  −= Nifi  be the N-series of velocity component.  Then we introduce the evaluation 
function  
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Where the A(t) is given by eq. (6). 
We find minimum point of J with respect to Ai, Af
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 and T, that is, 
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These equations are solved by the Newton’s method. 
The time range of the fitting is carefully selected.  When the 
values are almost near the initial value or the final value, these 
values may include some erroneous values.  Therefore, we 
first fix the initial and final time point and use the data fi

3
max

3
max // exfex i ≤≤

 in 
the range of 

 
where xmax

Some types of velocity profile with time are found, and they 
are shown in Fig. 2.  Type 1 shows a monotonous decrease of 
increases.  Type 2 has extremum and then the value change 
exceeded its initial value.  Type 3 also have extremum but its 
value does not exceed its initial value.  Type 4 has more than 
one extrema.  We change the fitting range of time in each 
profile type.  Because the GL equation is a model to capture 
the initial development, we cut off the time series of data at 
the peak of the fiest extremum.  This method gives unique 
profiles and a fitting result. 

 is the maximum in the profile and e is the Napier’s 
number. 

Fig. 2  Types of velocity variation 
with time 
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3 Results 

3.1 Onsetting Flow from Rest 

In this paper, we show the result at Γ = 4.0, that is very short cylinder.  The flow suddenly starts at rest, 
and the Reynolds number is 76.436 that is the critical Reynolds number for the onset of vortex flow in 
infinite lengths of cylinders [8].   
Figure 3 represents the positions at which the profiles of the fitted result are shown.  In this figure, the 
rotating inner cylinder is to the left and the stationary outside is to the right.  Positions (a) and (b) are 
near the inner wall, position (c) is at the mid-location in the radial direction, and position (d) is near the 
outer end of the flow region.  For the convenience, we introduce a two-dimensional coordinate (i, k) 
that has its origin (0, 0) at the lower left and the coordinate at the upper right of (80, 320) in Fig. 3. 
The fitting results of the radial velocity component are shown in Fig. 4.  In these results, the red line 
shows the calculated result, green line shows the fitted result by the third order solution given by eq. (6), 
and blue line represents the fitted result of the first order exponential solution.  Every result shows 
monotonous time variation and the third-order fitted curve gives good result while the first-order fitting 
curve diverge at the earlier stage.  This means that the slowing down effect is favorable in the results.  
The fitted curve at (a) gives a shortest time constant than others.  This is because the Ekman layer 
begins to develop with the rotation of the inner cylinder.  As will be noted later, the position (c) is near 
the center of a second Taylor vortex from the bottom.  The profile at this position shows a monotonic 
increase of the velocity component while another profile gives decreases.  However, all of these flow 
profiles are type (1) shown in Fig. 2.  

Fig. 4   Time variation of the radial velocity 
component and their fitted curves. 
 

Fig. 3   Locations where the 
fitted results are shown in this 
paper and the coordinate system 
in the azimuthal section. 
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The result for the velocity 
components are shown in Fig. 5.  
This case also well modeled by the 
third-order fitting curves.  Please 
be sure that the value of the 
velocity component at position (b) 
is an order of magnitude smaller 
than those at other positions.  This 
is because the position (b) is on the 
midline in the axial direction and 
no axial velocity appears when the 
flow is symmetry with respect to 
the axial direction. 
The contour of the time constant T 
in the azimuthal section is shown 
in Fig. 6.  The upper low and lower 
low represent the result of the 
radial velocity component and the 
axial velocity component, and 
from left to right, the T contour 
profile, types of velocity variation 
(Fig. 2) and the final result of the 
flow vectors are shown.  In the figure of the variation type, blue, cyan, yellow and red color represent 
to Type 1, 2, 3 and 4, respectively.  The Ekman layer first appears on the end walls.  Therefore the time 
constant of the radial velocity component change is small near the corners between the inner cylinder 
and end walls.  The time constant near the end walls grows with the radial positions.  This means that 
the flow development propagate from the corners to the outer region.   Apart from the end wall, the 
profile of the value of the time constant in the radial direction is small and the vortex flow grows with 
an almost fixed speed.   Although the radial variation is small, some drastic changes are found in the 
axial direction.  The locations of these changes are shown with the black arrows on the left side of the 
contour.  These locations almost correspond to the centers of vortices found in the final flow field.  The 
drastic change in the axial direction is due to the change of the types of the flow variations with time.  
In Fig. 2, the type 1 tends to give larger time constant T than that of the types 2, 3 and 4. When the 
variation changes from type 1 to type 2, 3 or 4 as the measuring position changes in the axial direction, 
the time constant becomes small, and vice versa. 
The contour of the time constant T of the axial velocity component has two sorts of lines corresponding 
to drastic changes.  One is the line that originates from the corners between inner cylinder and end 
walls and penetrate into the almost center region of the flow field.  The other appears at the jet region 
where the radial flow formulated by the vortices is an outer flow.  Similarly with the radial velocity 
component, the time constant depends on the type changes of the velocity variations. 

3.2 Developing and Decaying Flow 
 
Abshagen et al [5] investigated the difference of the time constants for the developing flow with a sub-
critical state and for the decaying flow with a critical state.  In this paper, we see the flow at the aspect 

 

Fig. 5  Time variation of the axial velocity 
component and their fitted curves. 
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ratio Γ = 4.0 and the radius ratio η = 0.6667.  We have found that the critical Reynolds number for the 
onset of the inner vortices lies between Re = 43.0 and 44.0.  Figure 7 shows the time constant obtained 
from the radial and axial velocity components of the developing and decaying flow between Re = 43.0 
and 44.0.  The developing flow and the decaying flow have similar profiles of the time constants.  In 
detail, the time constants of the developing flow are larger than those of the decaying flow.  This result 
contradicts with that obtained by Abshagen et al. [5].   One reason for this contradiction is the 
difference is the aspect ratio.  In our case, the lengths of the cylinders are short and the effect of the end 
wall is dominant to even to the inner vortices. 

 

Fig. 6  Time variation of the axial velocity component and their fitted curves. 
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4 Conclusions 
The development of the flow between the rotating inner cylinder and the stationary outer cylinder is 
investigated by the numerical approach.  The length of the cylinder is very short (Γ = 4.0) and the gap 
width is not small (η = 0.6667), and the effect of the end walls of the cylinders is large. 
When the onsetting flow grows from rest, the radial velocity component first begins to emerge near the 
corners of the inner cylinder wall and the end walls.  The contour of the time constant T for the radial 
velocity component has lines where the values T changes drastically.  These lines are almost located 
straight lines through the centers of the finally formed vortices.   The time constant of the axial velocity 
components has two sorts of lines: one begins at the corners between the inner cylinder and the end 
walls and the other is located near the jet of the flow field. 
The critical Reynolds number in our condition lies between 43.0 and 44.0.  The developing and 
decaying flows between these Reynolds numbers are examined. The contour of the time constant T 
have similar profiles for the developing and decaying flows, while the value of T is larger for the 
developing flow.  This result contradicts with that obtained in the previous work by Abshagen et al. [5].  
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