$B%F%$%i!<124XO"J88%(B
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Japan
- Abboud, M., ein beitrag zur theoretischen untersuchung von Taylor-Wirbeln im spalt zwischen zylinder/kagel-konfigurationen, ZAMM, Z., angrew. Math. Mech., 68-5 (1988), PP. T275-T319, Nakamura-23.$B!J%I%$(B $B%D8l$NO@J8!K(B
- Ahlers, G., Cannell, D.S., Dominguez-lerma, M.A., Heinrichs, R., wavenumber selection and eckhaus instability in Couette-Taylor flow, Physica, 23 D (1986), pp. 202-219, Nakamura-15.
- Ahlers, G., Cannell, D.S., Dominguez-lerma, M.A., Heinrichs, R., wavenumber selection and eckhaus instability in Couette-Taylor flow, Physica, 23D (1986), pp. 202-219, Nakamura-12.
- Ahlers, G., Cannell, D.S., vortex-front propagation in rotating Couette-Taylor flow, Physical Review Letters, 50-20 (16 May 1983), pp. 1583-1586, Nakamura-22.
- Aitta, A., Ahlers, G., Cannell, D.S., tricritical phenomena in rotating Couette-Taylor flow, Physical Review Letters, 54-7 (18 Feb. 1985), pp. 673-676, Nakamura-19.
- Aitta, A., dynamics near a tricritical point in Couette-Taylor flow, Physical Review Letters, 62-18 (1 May 1989), pp. 2116-2119, Nakamura-19.
- Aitta, A., quantitative landau model for bifurcations near a tricritical point in Couette-Taylor flow, Physical Review, A 34-3 (Sep. 1986), pp. 2086-2092, Nakamura-22.
- Andereck, C.D., Dickman, R., Swinney, H.L., new flows in a circular Couette system with co-rotating cylinders, Phys. Fluids, 26-6 (Jun. 1983), pp. 1395-1401, Nakamura-19.
- Andereck, C.D., Liu, S.S., Swinney, H.L., flow regimes in a circular Couette system with independently rotating cylinders, Journal of Fluid Mechanics, 164 (1986), pp. 155-183, Nakamura-8.
- Anson, D.K., Cliffe, K.A., a numerical investigation of the Schaeffer homotopy in the problem of Taylor-Couette flows, Proc. R. Soc. Lond., A 426 (1989), pp. 331-342, Nakamura-19.
$B%Z!<%8$N%H%C%W$X(B
- Babcock, K.L., Ahlers, G., Cannel, D.S., noise-sustained structure in Taylor-Couette flow with through flow, Physical Review Letters, 67-24 (9 Dec. 1991), pp. 3388-3391, Nakamura-14.
- Ball, K.S, Farouk, B., bifurcation phenomena in Taylor-couette flow with buoyancy effects, J. Fluid Mech., 197(1988), pp. 479-501, Nakamura-7
- Ball, K.S., Farouk, B., a flow visualization study of the effects of buoyancy on Taylor vortices, Phys. Fluids, A 1-9 (Sep. 1989), pp. 1502-1507, Nakamura-21.
- Barenghi, C. F., computations of transitions and Taylor vortices in temporally modulated Taylor-Couette flow, Journal of computational physics, 95 (1991), pp. 175-194, Nakamura-29.
- Barenghi, C.F., a spectral method for time modulated Taylor-Couette flow, Computer Methods in Applied Mechanics and Engineering, 80 (1990), pp. 223-227, Nakamura-14.
- Barenighi, C.F., Jones, C.A, the stability of the couette flow of helium$B-6(B, J. Fluid Mech., 197(1988), pp. 551-569, Nakamura-7
- Benjamin, T.B., Mullin, T., anomalous modes in the Talor experiment, Proc. R. Soc. Lond., A337(1981), pp. 221-249, Nakamura-11
- Benjamin, T.B., Mulling, T., notes on the multiplicity of flows in the Taylor experiment, Jounal of Fluid Mechanics, 121 (1982), pp. 219-230, Nakamura-8.
- Benjamin, T.B., applications of leray-schauder degree theory to problems of hydrodynamic stability, Mech. Proc. Comb. Phil. Soc., 79 (1976), pp. 373-392, Nakamura-6.
- Benjamin, T.B., bifurcation phenomena in steady flows of a viscous fluid $B-5(BTheory, Proc. R. Soc. Lond., A359(1978), pp. 1-26, Nakamura-11
- Benjamin, T.B., bifurcation phenomena in steady flows of a viscous fluid $B-6(B experiments, Proc. R. Soc. Lond., A359(1978), pp. 27-43, Nakamura-11
- Bergers, D., kinetic model solution for axysymmetric flow by the method of discrete ordinates, Journal of Computational Physics, 57 (1985), pp. 285-302, Nakamura-1.
- Bielek, C.A., Koschmieder, E.L., Taylor vortices in short fluid columns with large radius ratio, Phys. Fluids, A 2-9 (Sep. 1990), pp. 1557-1563, Nakamura-18.
- Bolstad, J.H., Keller, H.B., computation of anomalous modes in the Taylor experiment, journal of Computational Physics, 69 (1987), pp. 230-251, Nakamura-9.
- Brandstater, A., Swinney, H. L., chaotic Couette-Taylor flow, Nonlinear topics in ocean waves, edited by Osborne, A. R., North-Holland, Amsterdam, 1991, pp. 353-365, Nakamura-29.
- Brindley, J., spatio-temporal behaviour of flows with circular constraints, Physica, 23 D (1986), pp. 240-245, Nakamura-15.
- Broomhead, D.S., Ryrie, S.C., particle paths in wavy vortices, Nonlineanity, 1 (1988), pp. 409-434, Nakamura-12.
- Brown, R.A., Scriven, L.E., Silliman, W.J., computer-aided analysis of nonlinear problems in transport phenomena, New Approches to Nonlinear Problems in Dynamics, P.J. Holmes, SIAM, 1980, pp. 289-307, Nakamura-1. ?
- Bu(stress)hler, K., Polifke, N., dynamical behaviour of Taylor vortices with superimposed axial flow, Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems, Plenum Press (book?) (1990), pp. 21-29, Nakamura-14.
- Bu(stress)hler, K., advances in Taylor vortex flow: a report on the forth Taylor vortex flow working party meeting, Acta Mechanica, 62 (1980), pp. 47-61, Nakamura-15.
- Bu(stress)hler, K., symmetric and asymmetric Taylor vortex flow in spherical gaps, Acta Mechanica, 81 (1990), pp. 3-38, Nakamura-14.
- Burkhalter, J. E., Koschmieder, E. L., steady supercritical Taylor vortices after sudden starts, The physics of fluids, 17-11 (Nov. 1974), pp. 1929-1935, Nakamura-24.
- Busse, F. H., Davies, P.A., et. al., hydrodynamic instabilities and the transition to turbulence, (1981), Nakamura-26, (Book).
Prima, R. C. D., Seinney, H. L., instabilities and transition in flow
between concentric rotating cylinders, pp. 140-180.
Joseph, D. D., hydrodynamic stability and bifurcation, pp. 27-76.
- Buzug, T., Reimers, T., Pfister, G., dimensions and lyapunov spectra from measured time series of Taylor-Couette flow, Nonlinear evolution of spatio-temponal structures in dissipative continuous systems, pp. 7-19, Nakamura-25. (book?)
- Buzug, T., Stamm, J., Pfister, G., characterization of period-doubling scenarios in Taylor-Couette flow, Physical review, E 47-2 (Feb. 1993), pp. 1054-1065, Nakamura-29.
- Buzug. T., Stamm, J., Pfister, G., fractal dimensions of strange attractors obtained from the Taylor-Couette experiment, Physica, A 191 (1992), pp. 559-563, Nakamura-29.
$B%Z!<%8$N%H%C%W$X(B
- Chen, C.F., Christensen, D.K., stability of flow induced by an impulsively started rotating cylinder, The Physics of Fluids, 10-8 (Aug. 1967), pp. 1845-1846, Nakamura-19.
- Chen, C.F., Christensen, D.K., stability of flow induced by an impulsively started rotating cylinder, the Physics of Fluids, 10-8 (Aug. 1967), pp. 1845, Nakamura-12.
- Chen, C.F., Christensen, K.C., stability of flow induced by an impulsively started rotating cylinder, The Physics of Pluids, 10-8 (Aug. 1967), pp. 1845-1846, Nakamura-13.
- Chen, C.F., Liu, D.C.S, Skok, M.W, stability of circular couette flow with constant finite acceleration, Journal of Apllied Mechanics, June(1973), pp. 347-354, Nakamura-17
- Chen, J. C., Nietzel. G. P., Jankowski. D. F., the influence of initial condition on the linear stability of time-dependent circular Couette flow, Phys. Fluids, 28-2 (Feb. 1985), pp. 749-751, Nakamura-23.
- Chen, J.C., Neitzel, G.P, strong stability of impulsively intitiated couette flow for both axisymmetric and nonaxisymmetric disturbances, Journal of applied Mechaincs, 49(1982), pp. 691-696, Nakamura-17
- Chossat, P., Iooss, G., primary and secondary bifurcations in the Couette-Taylor problem, Japan J. Appl. Math., 2 (1985), pp. 37-68, Nakamura-27.
- Claussen, M., surface-layer similarity in turbulent circular Couette flow, J. Fluid Mech., 144 (1984), pp. 123-131, Nakamura-19.
- Cliffe, K.A., Kobine, J.J., Mullin, T., the
role of anomalous modes in Taylor-Couette
flow, Proc. R. Soc. Lond., A 439 (1992),
pp. 341-357, Nakamura-21.
- Cliffe, K.A., Mullin, T., a numerical and experimental study of anomalous modes in the Taylor experiment, Jounal of Fluid Mechanics, 153 (1985), pp. 243-258, Nakamura-8.
- Cliffe, K.A., numerical calculations of the primary-flow exchange process in the Taylor proglem, J. Fluid Mech.,197(1988), pp. 57-79, Nakamura-7
- Cognet, G., les e(stress)tapes vers la turbulence dans l'e(stress)coulement de Couette-Taylor entre cylindres coaxiaux, Journal de Me(stress)canique the(stress)orique et applique(stress)e, Nume(stress)ro spe(stress)cial (1984), pp. 7-44, Nakamura-9.
- Cole, J.A., Tayor-vortex instability and annulus-length effects, J. Fluid Mech, 75-1(1976), pp. 1-15, Nakamura-11
- Cooper, E.R., Jankowski, D.F., Neitzel, G.P. Squire, T.H., experiments on the onset of instability in unsteady circular Couette flow, J. Fluid Mech., 161 (1985), pp. 97-113, Nakamura-10.
- Coubitsky, M., Stewart, I., symmetry and stability in Taylor-Couette flow, SIAM J. Math. Anal., 17-2 (Mar. 1986), pp. 249-288, Nakamura-27.
- Coughlin K. T., Marcus, P. S., modulated waves in Taylor-Couette flow. Part1. Analysis, J. Fluid Mech., 234 (1992), pp. 1-18, Nakamura-25.
- Coughlin, K. T., Marcus, P. S., modulated waves in Taylor-Couette flow. Part 2. Numerical simulation, J. Fluid Mech., 234 (1992), pp. 19-46, Nakamura-25.
- Crawford, G.L., Park, K., Donnelly, R.J., vortex pair annihllation in Taylor wavy-vortex flow, Phys. Fluids, 28-1 (Jan. 1985), pp. 7-9, Nakamura-18.
- Cressely, R., Decruppe, J. P., flow birefringence visualization of transitions in circular Couette flow, Experiments in fluids, 13 (1992), pp. 43-48, Nakamura-25.
- Cruickshank, J.O., a new method for predicting the critical Taylor number in rotating cylindrical flows, Journal of Applied Mechanics, 54 (Sep. 1987), pp. 713-719, Nakamura-12.
- Crutchfield, j.p., space-time dynamics in video feedback, Physica, 10D(1984), pp. 229-245, Nakamura-2
$B%Z!<%8$N%H%C%W$X(B
- Dai, R. X., Szeri, A. Z., a numerical study of finite Taylor flows, Int. J. Non-Linear Mechanics, 25-1 (1990), pp. 45-60, Nakamura-28.
- Dai, R.-X., Dong, W., Szeri, A.Z., flow between eccentric rotating cylinders: bifurcation and stability, Int. J. Engng. Sci., 30-16 (1992), pp. 1323-1340, Nakamura-21.
- De La Penha, G.M., Medeiros, G.J., contemporary developments in continuum mechanics and partial differential equations, North-holland Publishing Company, (book), (1978), Nakamura-6.
Benjamin, T.B., applications of generic bifurcation theory in fluid
mechanics, pp. 45-73, Nakamura-6.
- Demay, Y., Iooss, G., calcul des solutions bifurque(stress)es pour le proble(stress)me de Couette-Taylor avec les deux cylindres en rotation, Journal de Me(stress)canique the(stress)orique et applique(stress)e, Nume(stress)ro spe(stress)cial (1984), pp. 193-216, Nakamura-9.
- Dominguez-Lerma, M.A., Ahlers, G., Cannell, D.S., effects of "kalliroscope" flow visualization particles on rotating Couette-Taylor flow, Phys. Fluids, 28-4 (Apr. 1985), pp. 1204-1206, Nakamura-18.
- Dominguez-Lerma, M.A., Cannell, D.S., Ahlers, G., eckhaus boundary and wave-number selection in rotating Couette-Taylor flow, Physical Review, A 34-6 (Dec. 1986), pp. 4956-4970, Nakamura-22.
- Donnelly, R.J., Fultz, D., experiments on the stability of viscous flow between rotating cylinders -- 2 visual observations, Proc. Roy. Soc. A, 258, pp. 101-123, Nakamura-10.
- Donnelly, R.J., Schwarz, K.W., experiments on the stability of viscous flow between rotating cylinders -- 6 finite-amplitude experiments, Proc. Roy. Soc. A, Vol. ?, pp. 531-556, Nakamura-10.
- Donnelly, R.J., Tanner, D.J., experiments on the stability of viscous flow between rotating cylinders -- 5 the theory of the oin technique, Proc. Roy. Soc. A, Vol. ?, pp. 520-530, Nakamura-10.
- Donnelly, R.J., experiments on the stability of viscous flow between rotating cylinders -- 1 Torque measurements, Proc. Roy. Soc. A, 246, pp. 312-325, Nakamura-10.
- Donnelly, R.J., experiments on the stability of viscous flow between rotating cylinders -- 3 enhancement of stability by modulation, Proc. Roy. Soc. A, Vol. ?, pp. 130-139, Nakamura-10.
- Donnelly, R.J., experiments on the stability of viscous flow between rotating cylinders -- 4 the ion technique, Proc. Roy. Soc. A, Vol. ?, pp. 509-519, Nakamura-10.
- Donnelly, R.J., externally modulated hydrodynamic systems, Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems, Plenum Press (book?) (1990), pp. 31-43, Nakamura-14.
- Doolen, G., Lee, Y.C.,Chen, H.H., Sun, G.Z., Maxwell, T., Lee, H.Y, Giles, C.L., machine Learning using ahigher order correlation network, Phsica, 22D(1986), pp. 276-306, Nakamura-2
- Dwoyer, D.L., Hussaini, M.Y., stability of time dependent and
spatially varying flows, (book), (1987), Nakamura-15.
Streett, C.L., Hussaini, M.Y., fiite length Taylor Couette flow, pp. 312-334, Nakamura-15.
- Dwoyer, D.L., Hussaini, M.Y., stability of time dependent and
spatially varying flows, (book), Nakamura-12.
Streett, C.L., Hussaini, M.Y., finite length Taylor
Couette flow, pp. 312-334, Nakamura-12.
$B%Z!<%8$N%H%C%W$X(B
- Eagles, P.M., development of Taylor-Couette flow on an intermediate timescale, Proc. R. Soc. Lond., A-398 (1985), pp. 289-305, Nakamura-10.
- Eagles, P.M., on the stability of slowly varying flow between concentric cylinders, Proc. R. Soc. Lond., A 355 (1977), pp. 209-224, Nakamura-22.
- El-Dujaily, M. J., Mobbs, F. R., the effect of end walls on subcritical flow between concentric and eccentric rotating cylinders, Int. J. Heat and Fluid Flow, 11-1 (Mar. 1990), pp. 72-78, Nakamura-28.
$B%Z!<%8$N%H%C%W$X(B
- Fasel, H., Booz, O., numerical investigation of supercritical Taylor-vortex flow for a wide gap, J. Fluid Mech., 138 (1984), pp. 21-52, Nakamura-27.
- Fineberg, J., Lathrop, D. P., Swinney, H. L., asymptotic scaling in turbulent Couette-Taylor flow, Proceedings for turbulence and spatially extended systems, Les Houches (Jan. 1992), France, pp. 20-31, Nakamura-29.
- Fitta, A., dynamics near a tricritical point in Couette-Taylor flow, Physical review letters, 62-18 (1 May 1989), pp. 2116-2119, Nakamura-23.
- Fortin, A., a numerical simulation of the transition to turbulence in a two-dimensional flow, Journal of Computational Physics, 70 (1987), pp. 295-310, Nakamura-3.
- Fust, G. S., Domblaser, B. C., Doschmieder, E. L., amplitudes and wavelengths of wavy Taylor vortices, Phys. Fluids, 28-5 (May 1985), pp. 1243-1247, Nakamura-23.
$B%Z!<%8$N%H%C%W$X(B
- Garrad, A.D., Quarton, D.C., symbolic computing as a tool in wind turbine dynamics, Journal of Sound and Vibration, 109-1 (1986), pp. 65-78, Nakamura-1.
- Goldshtik, M., Husain, H. S., Hussain, F., kinematic separation of mixtures, Physical review, A 45-12 (15 Jun. 1992), pp. 8611-8616, Nakamura-25.
- Golubitsky, M., Langford, W. F., pattern formation and bistability in flow between counterrotating cylinders, Physica, D 32 (1988), pp. 362-392, Nakamura-27.
- Gorman, M., Swinney, H.L., spatial and temporal characteristics of modulated waves in the circular Couette system, Journal of Fluid Mechanics, 117 (1982), pp. 123-142, Nakamura-8.
- Gorman, M., Swinney, H.L., visual observation of the second characteristic mode in a quasiperiodic flow, Physical Review Letters, 43-25 (17 Dec. 1979), pp. 1871-1875, Nakamura-12.
- Graham, R., Domaradzki, J.A., local amplitude equation of Taylor vortices and its boundary condition, Physical Review, A 26-3 (Sep. 1982), pp. 1572-1579, Nakamura-22.
- Green, A.E., Naghdi, P.M., a contribution to the Taylor-Couette flow problem, Proc. R. Soc. Lond., A 439 (1992), pp. 227-245, Nakamura-21.
- Green, A.E., Naghdi, P.M., a thermomechanical theory of a cosserat point with application to composite materials, Mech. appl. Math., 44-3 (1991), pp. 335-355, Nakamura-21.
- Gu, Z.H., Fahidy, T.Z., mass transport in the Taylor-vortex regime of rotating flow, Chemical Engineering Science, 40-7 (1985), pp. 1145-1153, Nakamura-19.
$B%Z!<%8$N%H%C%W$X(B
- Haken, H., syneygetics:an overview, Rep. Prog. Phys., 52(1989), pp. 515-553, Nakamura-5(book)
- Hall, P., centrifugal instabilities in finite containers: a periodic model, Fluid mech., 99-3 (1980), pp. 575-596, Nakamura-23.
- Hall, P., centrifugal instabilities in finite containers: a periodic model, J. Fluid Mech., 99-3 (1980), pp. 575-596, Nakamura-28.
- Hall, P., centrifugal instabilities of circumferential flows in finite cylinders: the wide gap problem, Proc. R. Soc. Lond., A 384 (1982), pp. 359-379, Nakamura-23.
- Hall, P., the stability of unsready cylinder flows, J. Fluid Mech., 67-1 (1975), pp. 29-63, Nakamura-10.
- Hall, P., the stability of unsteady cylinder flow, J. Fluid Mech.,67-1(1975), pp. 29-63, Nakamura-17
- Hammer, P.W., Wiener, R.J., Donnelly, R.J., bifurcation phenomena in nonaxisymmetric Taylor-Couette flow, Physical Review, A 46-12 (15 Dec. 1992), pp. 7578-7592, Nakamura-21.
- Heinrichs, R. M., Cannel, D. S., Fhlers, G., Jefferson, M., experimental test of the perturbation expansion for the Taylor instability at various wavenumbers, Phys. Fluids, 31-2 (Feb. 1988), pp. 250-255, Nakamura-23.
- Hill, A., numerical studies of "side-by-side" and other modes for the Taylor problem in a finite annulus, Computers and Fluids, 16-4 (1988), pp. 445-458, Nakamura-23.
- Holmes, P.J., new approaches to nonlinear problems in dynamics,
SIAM, 1980, Nakamura-3. (Book)
Decker, D.W., Keller, H.B., solution branching-a
constructive technique, pp. 53-69, Nakamura-3.
$B%Z!<%8$N%H%C%W$X(B
- ISCFD Nagoya, (book), (1989).
Kawamura, T., Iwatsu, R., numerical simulation of Taylor-Couette flow, pp. 695-700, Nakamura-19.
- Iooss, G., secondary bifurcations of Taylor vortices into wavy inflow or outflow boundaries, J. Fluid Mech., 173 (1986), pp. 273-288, Nakamura-24.
- Iooss, G., secondary bifurcations of Taylor vortices into wavy inflow or outflow boundaries, J. Fluids Mech., 173 (1986), pp. 273-288, Nakamura-28.
$B%Z!<%8$N%H%C%W$X(B
- Joanicot, M., Pieranski, P., Taylor instabilities in colloidal cristals, Le Journal de Physique-Lettres, 46 (1985), pp. 91-96, Nakamura-9.
- Jones, C.A., nonlinear Taylor vortices and their stability, J. Fluid Mech., 102 (1981), pp. 240-261, Nakamura-18.
- Jones, C.A., numerical methods for the transition to wavy Taylor vortices, Journal of Computational Physics, 61 (1985), pp. 321-344, Nakamura-18.
- Jones, C.A., numerical methods for the transition to wavy Taylor vortices, Journal of Computational Physics, 61 (1985), pp. 321-344, Nakamura-8.
- Jones, C.A., the transition to wavy Taylor vortices, J. Fluid Mech, 157(1985), pp. 135-162, Nakamura-7
- Joo, Y. L., Shaqfeh, E. S. G., the effects of inertia on the viscoelastic dean and Taylor-Couette flow instabilities with application to coating flow, Phys. Fluods, A 4-11 (Nov. 1992), pp. 2415-2431, Nakamura-25.
$B%Z!<%8$N%H%C%W$X(B
- Kachoyan, B.J., neutral curve behaviour in Taylor-Dean flow, Journal of Applied Mathematics and Physics, 38 (Nov. 1987), pp. 905-924, Nakamura-12.
- Kao, K. H., Chow, C. Y., linear stability of compressible Taylor-Couette flow, Phys. Fluids, A 4-5 (May 1992), pp. 984-996, Nakamura-25.
- Keller, H.B., lectures on numerical method in bifurcation problems, (book), (1987), Nakamura-4.
- King, G. P., Li, Y., Lee, W., Swinney, H. L., wave speeds in wavy Taylor-vortex flow, J. Fluid Mech., 141 (1984), pp. 365-390, Nakamura-28.
- Kirchga(stress)ssner, K., Sorger, P., branching analysis for the Taylor problem, Quart Journ. Mech. and Applied Math., 22-2 (1969), pp. 183-209, Nakamura-27.
- Kirchner, R.P., Chen, C.F., stability of time-dependent rotational Couette flow -- Part1 Experimental investigation, J. Fluid Mech., 40-1 (1970), pp. 39-47, Nakamura-13.
- Kirchner, R.P., Chen, C.F., stability of time-dependent rotationnal couette flow. Part 1.experimental investigation, J. Fluid Mech., 40-1(1970), pp. 39-47, Nakamura-17
- Kirchner, R.P., Chen, C.F., stability of time-dependent rotationnal couette flow. Part 2. Stability analysis, J. Fluid Mech., 48-2(1971), pp. 365-384, Nakamura-17
- Koga, J.K., Koschmieder, E.L., Taylor vortices in short fluid columns, Phys. Fluids, A 1-9 (Sep. 1989), pp. 1475-1478, Nakamura-21.
- Kuhlmann, H., Roth, D., Lu(stress)cke, M., Taylor vortex flow under harmonic modulation of the driving force, Physical review, A 39-2 (15 Jan. 1989), pp. 745-762, Nakamura-23.
$B%Z!<%8$N%H%C%W$X(B
- Langford, W. F., numerical studies of torus bifurcations, International series of numerical mathematics, 70 (1984), pp. 285-295, Nakamura-24.
- Langton, C.G., studying artificial life with celler autotama, Phisica, 22D(1986), pp. 120-149, Nakamura-2
- Lathrop, D. P., Fineberg, J., Swinney, H. L., transition to shear-driven turbulence in Couette-Taylor flow, Physical review, A 46-10 (15 Nov. 1992), pp. 6390-6405, Nakamura-29.
- Lathrop, D. P., Fineberg, J., Swinney, H. L., turbulent flow between concentric rotating cylinders at large Reynolds number, Physical review letters, 68-10 (9 Mar. 1992), pp. 1515-1518, Nakamura-25.
- Lathrop, D. P., Fineberg, J., Swinney, H. L., turbulent flow between concentric rotating cylinders at large Reynolds number, Physical review letters, 68-10 (9 Mar. 1992), pp. 1515-1518, Nakamura-29.
- Laure, P., Demay, Y., symbolic computation and equation on the center manifold application to the ouette-Taylor Problem, Computers and Fluids, 16-3 (1988), pp. 229-238, Nakamura-12.
- Laure, P., Demay, Y., symbolic computation and equation on the center manifold: application to the Couette-Taylor problem, Computers and Fluids, 16-3 (1988), pp. 229-238, Nakamura-23.
- Lectur notes in engineering, Brebbia, C.A., Orszag, S.A., (Book), 43(1989) Nathan,D., Herbert, B.K., Computations of Taylor vortex flowa using multigrid contlnuation methoda, pp. 191-216, Nakamura-16
- Lectur notes in physics, Akira, H. (Book) Mullin, T., cell numer selction in Taylor-coette flow, pp. 75-83, Nakamura-11
- Lee, S.J., Park, Y.J., a study on the instability of Taylor vortices between concentric cylinders, $BBg4Z5!3#3XLegrand, J., Coeuret, F., circumferential mixing in one-phase and two-phase Taylor vortex flows, Chemical Engineering Science, 41-1 (1986), pp. 47-53, Nakamura-19.
- Lu(stress)cke, M., Mihelcic, M., Wingerath, K., flow in a small annulus between concentric cylinders, J. Jluid Mech., 140 (1984), pp. 343-353, Nakamura-28.
- Lueplow, R. M., Docter, A., Min, K., stability of axial flow in an annulus with a rotating inner cyliner, Phys. Fluids, A 4-11 (Nov. 1992), pp. 2446-2455, Nakamura-25.
- Lui, D.C.S., Chen, C.F, numerical experiments on time-dependent rotational couette flow, JFM, 59(1973), pp. 77-95, Nakamura-17
$B%Z!<%8$N%H%C%W$X(B
- Marque(stress)s, F., on boundary conditions for velocity potentials in confined flows: application to Couette flow, Phys. Fluids, A 2-5 (May 1990), pp. 729-737, Nakamura-18.
- Mathis, D.M., Neizel, G.P., experiments on impulsive spin-down to rest, Phys. Fluids, 28-2 (Feb. 1985), pp. 449-454, Nakamura-18.
- Matsuda, Y., classification of critical points and symmetry-breaking in fluid phenomena and its application to synamic meterology, Journal of the Meteorological Society of Japan, 61-6, (Dec. 1983), pp. 771-787, Nakamura-3.
- Matsuda, Y., further study on the Structure of critical points in fluid systems -- effects of disturbance on the bifurcation point, Journal of the Meteorological Society of Japan, 65-1 (Feb. 1987), pp. 1-11, Nakamura-3.
- McFadden, G.B., Coriell, S.R., Murray, B.T., Glicksman, M.E., Selieck, M.E., effect of a crystal-melt interface on Taylor-vortex flow, Phys. Fluids, A 2-5 (May 1990), pp. 700-705, Nakamura-18.
- Meyer, J. A., Fasel, H., numerische untersuchungen zur stabilita(stress)t der Taylor-Wirbel-Stro(stress)mung im welten spalt, ZAMM, Z., angrew, Math. Mech., 68-5 (1988), pp. T317-T319, Nakamura-23. $B!J%I%$%D8l$NO@J8!K(B
- Meyer-Spasche, R., some bifurcation diagrams for Taylor vortex flows, Phys. Fluids, 28-5 (May 1985), pp. 1248-1252, Nakamura-23.
- Meyers, S.D., Sommeria, J., Swinney, H.L., laboratory study of the dynamics of jovian-type vortices, Physica, D 37 (1989), pp. 515-530, Nakamura-14.
- Morton, K.W., Baines, M.J., numerical methods for fluid dynamics,
(book), Clarendon Press, (1986), Nakamura-15.
Cliffe, K.A., Jepson, A.D., Spence, A., the numerical solution of bifurcation problems with symmetry with application to the finite Taylor problem, pp. 155-197, Nakamura-15.
- Mullin, T., Cliffe, K. A., Pfister, G., unusual time-dependent phenomena in Taylor-Couette flow at moderately low Reynolds number, Physical review letters, 58-21 (25 May 1987), pp. 2212-2215, Nakamura-24.
- Mullin, T., Darbyshire, A. G., intermittency in a rotating annular flow, Europhys. Lett., 9-7 (1989), pp. 669-673, Nakamura-24.
- Mullin, T., Lorenzen, A., bifurcation phenomena in flows between a rotating circular cylinder and a stationary square outer cylinder, J. Fluid Mech., 157 (1985), pp. 289-303, Nakamura-13.
- Mullin, T., Price, T.J., an experimental observation of chaos arising from the interaction of steady and time-dependent flows, Letters to Nature, 340 (27 Jul. 1989), pp. 294-296, Nakamura-19.
- Mullin, T., Tavener, S. J., Cliffe, K. A., an experimental and numerical study of a codimension-2 bifurcation in a rotating annumus, Europhys. Lett., 8-3 (1989), pp. 251-256, Nakamura-24.
- Mullin, T., finite-dimensional dynamics in Taylor-Couette flow, IMA Journal of applied mathematics, 46 (1991), pp. 109-119, Nakamura-29.
- Mullin, T., mutations of steady cellular flows in the Taylor experiment, Journal of Fluid Mechanics, 121 (1982), pp. 207-218, Nakamura-8.
- Murray B.T., McFadden, G.B., Coriell, S.R., stabilization of Taylor-Couette flow due to time-periodic outer cylinder oscillation, Phys. Fluids, A 2-12 (Dec. 1990), pp. 2147-2156, Nakamura-18.
- Mycielski, J., can mathematics explain natural intelligence?, Phsica, 22D(1986), pp. 366-375, Nakamura-2
$B%Z!<%8$N%H%C%W$X(B
- Nagata, M., on wavy instabilities of the Taylor-vortex flow between corotating cylinders, J. Fluid Mech, 88(1988), pp. 585-598, Nakamura-7
- Nagata, M., vifurcation in Couette flow between almost corotating cylinders, Journal of Fluid Mechanics, 169 (1986), pp. 229-250, Nakamura-8.
- Neitzel, G. P., numerical computation of time-dependent Taylor-vortex flows in finite-length geometries, J. Fluid Mech., 141 (1984), pp. 51-66, Nakamura-28.
- Neitzel, G.P., stability of circular couette flow with variable inner cylinder speed, J. Fluid Mech., 123(1982), pp. 43-57, Nakamura-17
- Neizel, G.P., marginal stability of impulsively initiated Couette flow and spin-decay, Phys. Fluids, 25-2 (Feb. 1982), pp. 226-232, Nakamura-18.
- Ning, L., Ahlers, G., Cannell, D.S., novel states in Taylor-Couette flow subjected to a coriolis force, Journal of Statistical Physics, 64 Nos. 5/6 (1991), pp. 927-944, Nakamura-14.
- Ning, L., Tveitereid, M., Ahlers, G., Cannell, D.S., Taylor-Couette flow subjected to external rotation, Physical Review, A-44-4 (15 Aug. 1991), pp. 2505-2513, Nakamura-14.
$B%Z!<%8$N%H%C%W$X(B
- Ogawa, A., time dependent phenomena of development processes of Taylor-vortices in the co-axial cylinders, J. Coll. Engng. Nihon Univ., A-26 (March-1985), pp. 117-132, Nakamura-10.
- Ovchinnikova, S.N., Yudovich, V.I., calculation of the secondary stesdy-state flow between rotating cylinders, Fluid Mechanics-Soviet Research, 1-2(1972), pp. 135-140, Nakamura-17
$B%Z!<%8$N%H%C%W$X(B
- Paap, H. G., Riecke, H., wave-number restriction and mode interaction in Taylor vortex flow: appearance of a short-wavelength instability, Physical review, A 41-4 (15 Feb. 1990), pp. 1943-1951, Nakamura-28.
- Park, K., Crawford, G.L., Donnelly, R.J., determination of transition in Couette flow in finite geometries, Physical Review Letters, 47-20 (16 Nov. 1981), pp. 1448-1450, Nakamura-22.
- Park, K., Donnelly, R.J., study of the transition to Taylor vortex flow, Physical Review, A 24-4 (Oct. 1981), pp. 2277-2279, Nakamura-22.
- Park, K.C., Flaggs, D.L., a symbolic foureir synthesis of a one-point integrated quadrilateral plate element, Computer Methods in Applied Mechanics and Engineering, 48 (1985), pp. 203-236, Nakamura-1.
- Park, K.C., Flaggs, D.L., an operational procedure for the symbolic analysis of the finite element method, Computer Methods in Applied Mechanics and Engineerng, 42 (1984), pp. 37-46, Nakamura-1.
- Pasp, H., Riecke, H., drifting vortices in ramped Taylor vortex flow: quantitative results from phase equation, Phys. Fluids, A 3-6 (Jun. 1991), pp. 1519-1532, Nakamura-18.
- Peter, J.R, Robert, L.L., energy stability of modulated circular couette flow, J. Fluid Mech., 79-3(1977), pp. 535-552, Nakamura-17
- Peter, J.R., Robert, L.L., energy stability of modulated circular couette flow, J. Fluid Mech, 79-3(1977), pp. 535-552, Nakamura-7
- Pfiste, G., Schmidt, H.,Cliffe, K.A., Mullin, T., bifurcation phenomena in Taylor-couette flow in a very short annulus, J. Fluid Mech.,191(1988), pp. 1-18, Nakamura-7
- Price, T.J., Mullin, T., an experimental observation of a new type of intermittency, Physica, D 48 (1991), pp. 29-52, Nakamura-18.
$B%Z!<%8$N%H%C%W$X(B
- Rank, E., Babuska, I., an expert system for the optiman mesh design in the hp-version of the finite element method, International Journal for Numerical Methods in Engineering, 24 (1987), pp. 2087-2106. Nakamura-1.
- Rehak, M.L., Dimaggio, F.L., Benaroya, H., Elishakoff, I., random vibrations with macsyma, Computer Methods in Applied Mechanics and Engineering, 61 (1987), pp. 61-70, Nakamura-1.
- Riecke, H., Paap, H. G., parity-breaking and Hopf bifurcations in axisymmetric Taylor vortex flow, Physical review, A 45-12 (15 Jun. 1992), pp. 8605-8609, Nakamura-25.
- Riley, D. S., Winters, K. H., modal exchange mechanisms in Lapwood convection, J. Fluid Mech., 204 (1989), pp. 325-358, Nakamura-23.
- Riley, P.J., Laurence, R.L, linear stability of modulated circular couette flow, J. Fluid Mech., 75-4(1976), pp. 625-646, Nakamura-17
$B%Z!<%8$N%H%C%W$X(B
- Schaeffer, D.G., qualitative analysis of a model for boundary effects in the Taylor problem, Mech. Proc. Comb. Phil. Soc., 87 (1980), pp. 307-337, Nakamura-6.
- Schrauf, G., the first instability in spherical Taylor-Couette flow, Journal of Fluid Mechanics, 166 (1986), pp. 287-303, Nakamura-9.
- Schro(stress)der, W., Keller, H.B., wavy Taylor-vortex flows via multigrid-continuation methods, journal of Computational Physics, 91 (1990), pp. 197-227, Nakamura-19.
- Schumack, M. R., Schults, W. W., Taylor vortices between elliptical cylinders, Phys. Fluids, A 4-11 (nov> 1992), pp. 2578-2581, Nakamura-25.
- Seminara, G., Hall, P., centrifugal instability of a stokes layer: linear theory, Proc. R. Soc. Lond., A 350 (1976), pp. 299-316, Nakamura-22.
- Seminara, G., Hall, P., the centrifugal instability of a stokes layer: nonlinear theory, Proc. R. Soc. Lond., A 354 (1977), pp. 119-126, Nakamura-22.
- Shaeffer, D., (lecture of shaeffer at the university of warwick), (1980), pp. 13-47, Nakamura-6. ?
- Snyder, H.A., hcange in wave-form and mean flow associated with wavelengh variations in rotating couette flow.part1, J. Fluid Mech,35-2(1969), pp. 337-352, Nakamura-11
- Snyder, H.A., wave-number selection at finite amplitude in rotating Couette flow, P. Fluid Mech., 35-2 (1969), pp. 273-298, Nakamura-22.
- Snyder, H.A., wave-number selection at finite amplitude in rotating couette flow, J. Fluid Mech., 35-2(1969), pp. 273-298, Nakamura-11
- Sobey, I.J., Drazin, P.G., bifurcations of two-dimensional channel flows, Journal of Fluid Mechanics, 171 (1986), pp. 263-287, Nakamura-3.
- Stability in th mechanics of continua, Schroeder., F.H, (Book) Cognet, G., Bouabdallah, A., Aider, A.A., laminar-turbulent transiton in Tayor-coette flow, influence of geometrical parameters, pp.330-340, Nakamura-11
- Stakgold, I., branching of solutions of nonlinear equations, SIAM Review, 13-3, (July-1971), pp. 289-332, Nakamura-3.
- Steinberg, S., Roache, P.J., symbolic manipulation and computational fluid dynamics, Journal of Computational Physics, 57 (1985), pp. 251-284, Nakamura-1.
- Stern, C., Chossat, P., Hussain, F., azimuthal mode interaction in counter-rotating Taylor-Couette flow, Eur. J. Mech., B 9-1 (1990), pp. 93-106, Nakamura-28.
- Streett, C.L., Hussaini, M.Y., a numerical simulation of finite-length Taylor-Couette flow, Computational Fluid Dynamics, Vol. ? (1988), pp. 663-675, Nakamura-12.
- Swinney, H. L., spatiotemporal patterns, to appear in predicting the future and understanding the past, edited by Weigend, A., Gershenfeld, N., Addison Wesley (1993), pp. 1-7, Nakamura-29.
$B%Z!<%8$N%H%C%W$X(B
- Tabeling, P., dynamics of the phase variable in the Taylor vortex system, Le Journal de Physique-Lettres, 44 (1983), pp. 665-672, Nakamura-9.
- Takeda, Y., Kobashi, K., Fischer, W.E., observation of the transient behaviour of Taylor vortex flow between rotating concentric cylinders after sudden start, Experiments in Fluids, 9 (1990), pp. 317-319, Nakamura-18.
- Tam, W. Y., Swinney, H. L., mass transport in turbulent Couette-Taylor flow, Physical review, A 36-3 (1 Aug. 1987), pp. 1374-1381, Nakamura-24.
- Tong, P., Godburg. W. I., Huang, J. S., measured scaling properties of inhomogeneous turbulent flows, Physical review, A 45-10 (15 May 1992), pp. 7222-7230, Nakamura-29.
- Tustaniwsky, J. I., Carmi, S., nonlinear stability of modulated finite gap Taylor flow, Phys, Fluids, 23-9 (Sep. 1980), pp. 1732-1739, Nakamura-24.
- Tustaniwsky, J.I., Carmi, S., nonlinear stability of modulated finite gap Taylor flow, Phys. Fluids, 23-9 (Sep. 1980), pp. 1732-1739, Nakamura-18.
$B%Z!<%8$N%H%C%W$X(B
- Vastano, J. A., Moser, R. D., short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow, J. Fluid Mecyh. 233 (1991), pp. 83-118, Nakamura-25.
- Vroomhead, D. S., Ryrie, S. C., particle paths in wavy vortices, Nonlinearity, 1 (1988), pp. 409-434, Nakamura-24.
$B%Z!<%8$N%H%C%W$X(B
- Walsh, T.J., Donnelly, R.J., Taylor-Couette flow with periodically corotated and counterrotated cylinders, Physical Review Letters, 60-8 (22 Feb. 1988), pp. 700-703, Nakamura-21.
- Walsh, T.J., Wagner, W.T., Donnelly, R.J., stability of modulated Couette flow, Physical Review Letters, 58-24 (15 Jun. 1987), pp. 2543-2546, Nakamura-21.
- Wei, T., Kline, E.M., Lee, S.H.-K., Woodruff, S., go(stress)rtler vortex formation at the inner cylinder in Taylor-Couette flow, J. Fluid Mech., 245 (1992), pp. 47-68, Nakamura-21.
- Wiener, R. J., Hammer, P. W., Ewanson, C. E., Donnelly, R. J., stability of Taylor-Couette flow subject to an external coriolis force, Physical review letters, 64-10 (5 Mar. 1990), pp. 1115-1118, Nakamura-28.
- Winer, R.J., Hammer, P.W., Swanson, C.E., Samuels, D.C., Donnelly, R.J., the effect of a coriolis force on Taylor-Couette flow, Journal of Statistical Physics, 64 Nos5/6 (1991), pp. 913-926, Nakamura-14.
- Wolfram, S., aproaches to complexity engieering, Phsica, 22D(1986), pp. 385-399, Nakamura-2
- Wolfram, S., preface, Physica, 10D(1984), pp. 7-12, Nakamura-2
- Wolfram, S., universallty and complexity in cellular automata, Phsica, 10D(1984), pp. 1-35, Nakamura-2
- Wu, M., Andeeck, C.D., Brand, H.R., the phase dynamics of turbulent Taylor vortex flow, Europhys. Lett., 19-7 (1992), pp. 587-592, Nakamura-21.
- Wu, M., Andereck, C. D., phase dynamics of wavy vortex flow, Physical review letters, 67-10 (2 Sep. 1991), pp. 1258-1261, Nakamura-25.
- Wu, M., Andereck, D., phase dynamics in the Taylor-Couette system, Phys. Fluids, A 4-11 (Nov. 1992), pp. 2432-2445, Nakamura-25.
- Wu, X., Swift, J.B., onset of secondary flow in the modulated Taylor-Couette system, Physical Review, A 40-12 (15 Dec. 1989), pp. 7179-7201, Nakamura-18.
- Wu, X., Swift, J.B., onset of secondary flow in the modulated Taylor-Couette system, Physical Review, A 40-12 (15 Dec. 1989), pp. 7197-7201, Nakamura-19.
$B%Z!<%8$N%H%C%W$X(B
- Xu, Y.H., Smith, M.M., Smith, G.F., computer aided generation of anisotropic constitutive expressions, Int. J. Engng. Sci., 25-6 (1987), pp. 711-722, Nakamura-1.
$B%Z!<%8$N%H%C%W$X(B
- Yang, W., heat transfer and fluid flow in rotating machinery,
Hemisphere Publishing Corporation (book), (1987),
Nakamura-15.
Kataoka, K., Deguchi, T., generation and evolution of turbulence in
an annulus between two concentric rotating cylinders, pp. 245-254,
Nakamura-15.
Kataoka, K., Mizusugi, T., Ueno, H., Ohmura, N., hysteresis of
dynamical transitions in Taylor-Couette flow,
pp. 270-277,Nakamura-15.
Torikai, K., Suzuki, K., fluid flow resistance on surface of
rotating cylindrical drums in enclosure, pp. 304-313,
Nakamura-15.
- dwards, W.S., Beane, S.R., Varma, S., onset of wavy vortices in the finite-length Couette-Taylor problem, Phys. Fluids, A 3-6 (Jun. 1991), pp. 1510-1518, Nakamura-18.
- iffe, K.A., numerical calculations of two-cell and single-cell Taylor flows, Journal of Fluid Mechanics, 135 (1983), pp. 219-233, Nakamura-8.
- van Heijst, G.J.F., Davies, P.A., Davis, R.G., spin-up in a rectangular container, Phys, Fluids, A 2-2 (Feb. 1990), pp. 150-159, Nakamura-18.
$B%Z!<%8$N%H%C%W$X(B
- $B2OB<(B $BE/Li(B, Taylor-coette$BN.$N?tCM%7%_%e%l!<%7%g%s(B, $BBh#2#12sMpN.%7%s%]%8%&%`9V(B
$B1iO@J8=8(B(1989), pp. 131-135, Nakamura-20,
- $BKR2,(B $B9nLo(B, $B1J0f(B $BJ8@2(B, $BBgO)(B $BDLM:(B, $BJQD4$5$l$?%F%$%i!$BD;C+(B $BN4(B, $BHsF1<42sE>1_E{4V$K@8$:$k%F%$%i!<12N.(B, $B6e=#Bg3X1~MQNO3X8&5f=j(B
$B=jJs(B, 60 ($B><(B59), pp. 39-44, Nakamura-9.
- $B?9(B $B650B(B, $B9>8}(B $B9'>4(B, $BCfB<(B $B4nBeJP?4Fs=E1_E{4IFb$K$*(B
$B$1$kHs%K%e!<%H%sN.BN$N05NON.$l(B, $BA!0]5!3#3X2q(B, 38-2 (1985), pp. 49-57,
Nakamura-9.
- $B;3ED(B $BK-(B, $B:#Hx(B $BLPFs=E1_E{4V$NN.$l$HN.BNK`;$(B, $B5!O@(B, B, 52-484
($B><(B61-12), pp. 3829-3835, Nakamura-9.
- $BEl5~Dk9qBg3X9R6u8&5f=jJs9p(B, 2-12-26 (Aug. $B><(B2), (book), Nakamura-13.
Terada, T., Hattori, K., some experiments on motions of
fluids, pp. 287-326, Nakamura-13.
- $BD;C+(B $BN4(B, $B2sE>F1<41_E{4V$NN.$l$K$*$1$kM-8B1_E{D9$N8z2L(B, $B6e=#Bg3X1~MQNO(B
$B3X8&5f=j=jJs(B, 59 ($B><(B58), pp. 37-42, Nakamura-13.
- $BBgO)(B $BDLM:(B, $B2sE>F1<41_E{4V$NA0MpN.>uBV(B, $B=PE5ITL@(B, pp. 60-77,
Nakamura-15.
- $BEl(B $B>0;K(B, $B>.2O86(B $B2C5W<#(B, $BHSED(B $B@?0l(B, $B2sE>Fs=E1_E{4IFbN.$l$NHsDj>o;0$B%Z!<%8$N%H%C%W$X(B